- Главная /
- Услуги /
- Лазерная резка /
- Лазерная резка металла
Лазерная резка металла
Лазерная резка металла основана на применении сфокусированного лазерного луча, обычно управляемого компьютером. Лазерный луч характеризуется направленностью, монохроматичностью и когерентностью. Свойства лазерного луча позволяют сфокусировать его на малый участок материала и создать высокую плотность энергии, достаточную для разрушения этого материала.
Резка металлов и сплавов
При воздействии луча лазера металл нагревается и начинает плавиться. Дальнейший нагрев приводит к увеличению температуры до точки кипения и испарению металла. Резка металлов и сплавов может осуществляться как плавлением, так и испарением. На практике чаще применяется плавление, поскольку для испарения требуется более высокая мощность лазера.
В процессе резки в обрабатываемую зону подается под давлением газ, что позволяет увеличить толщину обрабатываемого металла, увеличить скорость резки и сократить затраты энергии. В настоящее время для лазерной резки применяют воздух, кислород, азот или инертный газ. Кислород, применяемый при лазерной резке, вызывает окисление металла, снижая отражение лазерного луча, образует дополнительную теплоту за счет горения металла в кислороде и выдувает из области реза расплавленный металл и продукты горения.
Способы лазерной резки
Существуют два способа лазерной резки. Для металлов, которые воспламеняются ниже точки горения (титан и низкоуглеродистая сталь), плавление осуществляется за счет теплоты горения металла. Металлы, которые образуют тугоплавкие оксиды и не горят до плавления (алюминий, медь, высокоуглеродистые стали), режутся плавлением и удалением жидкого металла струей газа.
Виды лазеров
В установках лазерной резки применяются твердотельные, газовые, щелевые и газодинамические лазеры. В твердотельных лазерах в качестве рабочего тела используется рубин, неодим, неодимовое стекло, алюмоиттриевый гранат. Твердотельные лазеры имеют невысокую мощность (от 1 до 6 кВт) и длину волны от 0,7 до 1 мкм. Применяют лазеры в непрерывном и импульсном режимах излучения. Импульсный режим позволяет снизить потребление энергии.
В газовых лазерах рабочим телом является смесь газов (углекислого газа, гелия и азота). Возбуждение газа осуществляется электрическим разрядом. Мощность газовых лазеров достигает 20 кВт. В щелевых лазерах накачка осуществляется высокой частотой, благодаря чему увеличивается устойчивость разряда. Щелевая конструкция обеспечивает лучший отвод тепла от активной среды лазера. Наиболее эффективны щелевые газовые СО2 лазеры. В щелевых лазерах используется непрерывный и частотно-импульсный режим излучения. Углекислотные лазеры работают на длине волны около 10 мкм.
Принцип действия газодинамических лазеров основан на испускании газом когерентного излучения при охлаждении газа, нагретого до температуры от 1000 до 3000 К и выходящего из сопла со сверхзвуковой скоростью. Газодинамические лазеры позволяют получить максимальную мощность более 150 кВт.
Для резки металлов в основном применяются твердотельные лазеры, так как на длине волны твердотельного лазера металлы имеют максимальное значение поглощения. Углекислотные лазеры подходят для обработки почти любых материалов: и металлов, и неметаллов. Лазерная резка металла производится на установках мощностью от 500 Вт, а для резки цветных металлов необходима мощность установки от 1 кВт.
Лазерная резка стали
Лазерная резка стали углеродистых сортов осуществляется с применением кислорода. За счет реакции металла с кислородом выделяется более чем в 3 раза больше тепла, чем от самого излучения лазера. При резке с кислородом получается высокое качество реза. Резка листовой стали на малых скоростях может вызвать перегрев и неуправляемое горение металла за зоной резки, что приводит к увеличению ширины и шероховатости реза. В некоторых случаях (вырезка отверстий малого диаметра) резка стали осуществляется с применением вместо кислорода инертных газов.
Резка нержавеющей стали лазером отличается зашлаковыванием реза легирующими элементами и образованием тугоплавких оксидов. Оксиды имеют низкую текучесть и трудно выводятся из зоны резки. Поэтому лазерная резка нержавеющей стали, особенно хромоникелевых и высокохромистых сортов, производится при подаче в зону резки азота под высоким давлением.
Лазерная резка меди
Лазерная резка меди, а также резка латуни, алюминия и его сплавов имеет ряд особенностей. Эти металлы имеют высокую теплопроводность и низкую поглощающую способность к лазерному излучению длиной волны углекислотного лазера. Резка этих металлов производится твердотельными лазерами высокой мощности. Резка меди производится для листов небольшой толщины (до 2 мм) лазером, работающем в импульсно-периодическом режиме. Лазерная резка латуни дает пористую шероховатую поверхность реза с гратом на нижней кромке, причем при большой толщине листа качество поверхности становится хуже.
Режим лазерной резки
Ширина реза, качество резки и другие параметры зависят от режима работы лазерной установки. Режим лазерной резки определяют мощность излучения, скорость резки, диаметр сфокусированного пятна, тип применяемого газа и его давление. Кроме того, импульсный режим характеризуется частотой повторения и длительностью импульсов и средней мощностью излучения.
Преимущества и недостатки лазерной резки
Лазерная резка металла обеспечивает ряд преимуществ, позволяющих сделать выбор в его пользу:
- способность к резанию любых материалов;
- получение качественных и узких резов;
- минимальные деформации материала;
- высокая точность;
- невысокая цена лазерной резки металла при высоком качестве;
- высокая степень автоматизации.
К недостаткам метода лазерной резки металла можно отнести тот факт, что лазерная резка листового металла имеет ограничение по толщине листа (до 40 мм) , а также высокую стоимость самого оборудования и его обслуживания.